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Abstract. Concern is beginning to grow in the high-performance com-
puting (HPC) community regarding the reliability guarantees of future
large-scale systems. Disk-based coordinated checkpoint/restart has been
the dominant fault tolerance mechanism in HPC systems for the last
30 years. Checkpoint performance is so fundamental to scalability that
nearly all capability applications have custom checkpoint strategies to
minimize state and reduce checkpoint time. One well-known optimiza-
tion to traditional checkpoint/restart is incremental checkpointing, which
has a number of known limitations. To address these limitations, we in-
troduce libhashckpt; a hybrid incremental checkpointing solution that
uses both page protection and hashing on GPUs to determine changes
in application data with very low overhead. Using real capability work-
loads, we show the merit of this technique for a certain class of HPC
applications.

1 Introduction

Disk-based coordinated checkpoint/restart has been the dominant fault tolerance
mechanism in high performance computing (HPC) systems for at least the last 30
years. In current large distributed-memory HPC systems, this approach generally
works as follows: periodically all nodes quiesce activity, write all application and
system state to stable storage, and then continue with the computation. In the
event of a failure, the stored checkpoints are read from stable storage to return
the application to a known-good state.

⋆ Sandia National Laboratories is a multi-program laboratory operated by Sandia Cor-
poration, a wholly owned subsidiary of Lockheed Martin Corperation, for the U.S.
Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.



Checkpoint performance impacts scalability of large-scale applications to
such a degree that many capability applications have their own custom applica-

tion-specific checkpoint mechanism to minimize the saved checkpoint state and
therefore the time to checkpoint (this time is also referred to checkpoint commit
time). While this approach minimizes the application state that must be written
to disk, it requires intimate knowledge of the application’s computation and data
structures, and is typically difficult to generalize to other applications.

One well-known and generalized optimization of traditional checkpoint/re-
start is incremental checkpointing. Incremental checkpointing [6, 8, 17] attempts
to reduce the size of a checkpoint, and therefore the time to write a checkpoint,
by saving only differences in state from the last checkpoint.

Current incremental methods have failed to achieve dramatic decreases in
checkpoint size because of a reliance on page protection mechanisms to deter-
mine which address ranges have been written, or dirtied, during the checkpoint
interval [8]. Relying solely on page-based mechanisms forces such an approach to
work at a granularity of the operating systems page size. Even if only one byte
in a page is written, the entire page is marked as dirty and must be saved. Fur-
thermore, if identical values are written to a location, that page is still marked
as dirty. These problems are also compounded by the increasing maximum page
sizes of modern processors and the increased performance for HPC applications
on these larger page sizes.

To address these limitations, we introduce libhashckpt: a hybrid incremen-
tal checkpointing approach that uses page protection mechanisms, a hashing
mechanism, and MPI hooks to determine the locations within a page that have
changed. To reduce the overhead of the hash calculation, libhashckpt also uses
graphics processing units (GPU) to offload the hash calculation. Using real
HPC workloads, we compare the performance of this technique against page
protection-based incremental systems and highly optimized, application-specific
checkpoint techniques. Our results show that our approach is able to dramat-
ically reduce system checkpoint sizes compared to previous incremental check-
pointing systems, in some cases approaching the checkpoint sizes of hand-tuned
application-specific checkpointing systems.

2 Approach

2.1 Overview

The hash-based incremental checkpointing mechanism in libhashckpt works as
follows. While the application is running, the library uses the page-protection
mechanism to mark those virtual memory pages that have been written in the
checkpoint interval as potentially dirty. To support MPI applications, the library
also intercepts receive calls and marks message buffers as dirty, identifying them
as candidates to be checked by the hashing mechanism. These message buffers
require marking because changes in memory from user-level network hardware
is not subject to the processor’s page protection mechanisms.



When a checkpoint is requested, the library hashes all blocks corresponding
to potentially dirty pages, comparing the key with previously stored values, if
they exist. If no key exists, or if the key has changed, the block is marked to be
included in the checkpoint and excluded otherwise. If the node contains a GPU,
potentially dirty blocks are copied down to the GPU and the computed keys are
copied up to host memory. Finally, once the hash calculation has completed, all
blocks that have been marked as changed by the library are then saved to stable
storage for later retrieval, if needed.

2.2 Library Implementation Details

libhashckpt is based on the libckpt library [17], now referred to as clubs [2].
Clubs is a transparent, user-level, checkpoint library for Unix based systems. It
contains a number of optimizations including:

– Virtual memory page-protection based incremental checkpointing;

– Forked checkpointing; and,

– User-directed checkpointing which allows the user to include or exclude por-
tions of the processes address space in the checkpoint.

We added the following functionality to this library. Firstly, we added a
framework for calculating and storing hash keys of arbitrary block size. The block
size can be adjusted to be larger or smaller than the native page size. We also
modified the library to intercept MPI receive calls using the MPI profiling layer
found in most modern MPI libraries. Finally, we added an engine for offloading
this hash calculation to graphics processing units, if any are present.

2.3 Applications and Platform

To evaluate the merit of our hash-based checkpointing library, we present results
from two key HPC applications; CTH [9] and LAMMPS [18, 19]. These appli-
cations represent important HPC modeling and simulation workloads. They use
different computational techniques, are frequently run at very large scale for
weeks at a time, and are key simulation applications for the US Department of
Energy. Also, each of these applications contain highly-optimized application-
specific checkpoint mechanisms that will be used for comparison with the meth-
ods outlined in this paper.

These application tests were conducted on the Cray Red Storm system at
Sandia National Laboratories. For these application runs, the hashing was per-
formed by a spare on-node CPU core as Red Storm system does not contain
GPUs. For the GPU results in this paper, we compare the performance of the
Opteron processor on Red Storm [5] against that of a NVIDIA Tesla C1060
GPU.



3 Results

In this section, we outline the performance of libhashckpt. First, we examine
the results of hashing versus page-based protection mechanisms for determin-
ing the percentage of application memory that has actually changed. Following
this, we examine the performance of this library with the two aforementioned
simulation workloads, comparing this hash-based approach with both standard
page protection-based incremental checkpointing and each application’s specific
checkpoint mechanism. Finally, we examine the performance advantage of com-
puting the MD5 [12] hash used by libhashckpt using a GPU versus a CPU and
use a simple model to outline the viability of this method.

With this hash-based approach aliasing is a concern. Aliasing, also referred
to as collisions, comes about when modifications to a block are just such that
the key values are identical. The danger with aliasing is the library will not save
modified application data, thereby corrupting the application in the event of a
restart. Previous studies have shown the likelihood of aliasing to be higher in
practice then expected theoretically for a number of hash functions. Specifically,
with the hash signature functions CRC32 and XOR, the probability of collision
has been shown to be too high to be considered safe [7]. Secure hash signatures
like MD5 and SHA1, however, have been shown to behave in practice as expected
theoretically, and therefore reliable enough to be used in a hash-based approach
[13].

3.1 Hash-based Dirty Data Detection

The key feature that libhashckpt hopes to exploit is finer-grained detection of
dirtied blocks than is currently possible using mechanisms based solely on page
protection mechanisms. To examine the overall potential of such a hash-based
approach, we first used libhashckpt to examine what portion of an application’s
memory actually changed (using fine-grained hashing) versus the percentage that
a pure page protection-based mechanism would indicate was changed.

Figure 1 shows the percentage of memory that our hash-based mechanism
indicates actually changed at each 15 minute checkpoint interval versus the per-
centage that a page protection mechanism indicates may have changed. For each
of these tests, we use a 512 byte block size on an operating system with 4KB
pages. Therefore each machine page contains 8 hash blocks. In Figure 1(a), we
see that, while nearly all the allocated memory is written in a checkpoint interval,
a very small percentage of that memory actually changes. This small percentage
of change is an artifact of the simulation problem. The application uses thresh-
olding such that, in a small simulation-time interval, sections of the simulation
do not change. In contrast, for LAMMPS in Figure 1(b), the amount of data
changed is nearly identical to the data written. This is because the largest data
structure in LAMMPS is the neighbor structure, which continuously changes as
atoms move around.

These results demonstrate the potential accuracy advantage a hash-based
incremental checkpointing approach can provide over a purely page protection-



P
er

ce
nt

 A
pp

lic
at

io
n 

M
em

or
y 

C
ha

ng
ed

 in
 C

yc
le

Checkpoint Cycle

All Ranks

88

 0

 20

 40

 60

 80

 100

 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

(a) CTH

P
er

ce
nt

 A
pp

lic
at

io
n 

M
em

or
y 

C
ha

ng
ed

 in
 C

yc
le

Checkpoint Cycle

All Ranks

84

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10
 12

 14
 16

 18
 20

(b) LAMMPS

Fig. 1. Average percent of allocated memory changed detected using a hash-based
incremental checkpointing mechanism for the CTH and LAMMPS. The shaded region
represents the average percent of memory written to using a page-protection based
mechanisms. Errorbars are shown for CTH but omitted for LAMMPS as the per-
process variation is ±0.5%



based mechanism. On the other hand, these results also show that the potential
benefits are also highly application-dependent.

3.2 Checkpoint File Size Comparison

Based on the results in the previous section, we then examined the resulting
difference in checkpoint sizes between the two incremental checkpointing ap-
proaches (pure page protection vs. libhashckpt’s hybrid page protection/hash-
ing scheme). We also compared the size of these checkpoints with those generated
by the application-specific mechanisms. These application specific methods are
highly optimized, and, for the purpose of this work, we view these checkpoint
sizes as a file size optimum.

Application VM CKPT Hash CKPT App CKPT
(MB) (MB) (MB)

CTH 513 35 (93%) 26 (95%)
LAMMPS 2735 2670 (2.3%) 608 (78%)

Table 1. Per-process checkpoint size for CTH and LAMMPS. This table contains the
size of the checkpoint using standard page protection-based system-level incremen-
tal checkpointing (VM CKPT), libhashckpt’s hybrid approach, and an application-
specific checkpointing approach (App CKPT). For the latter two columns the number
in parenthesis is the percent reduction in size when compared to a system-based incre-
mental checkpoint. The VM CKPT and Hash CKPT checkpoints contains data from
both the application as well as other libraries linked with the application, for example
MPI library data and its associated buffers.

Table 1 shows a comparison in per-process checkpoint sizes for our two ap-
plications. We see that for CTH, libhashckpt’s hash-based method dramati-
cally reduces the size of system-based incremental checkpoints based solely on a
page protection mechanism. Custom application-specific checkpointing mecha-
nism does better still, but our hybrid scheme results in checkpoints that are only
35% larger than this highly-optimized approach. One reason our hash-based li-
brary is larger than the application-specific method has to do with the fact that
the application checkpoint contains only application data, while the other meth-
ods shown save state from the application as well as the libraries linked with the
application, most notably the MPI library and its associated data and buffers.

In contrast to CTH, the hash- and page-based schemes are nearly identi-
cal in size for LAMMPS, with application-specific checkpointing routines of-
fering a 75% reduction in checkpoint sizes. This is because the application-
specific checkpointing mechanism in LAMMPS can completely avoid writing
neighbor structures to checkpoints because they can be reconstructed at appli-
cation restart, while system-based methods do not have the application-specific
knowledge needed to do this.



3.3 GPU Performance

Figure 2 compares GPU vs CPU performance of an MD5 calculation for varying
block sizes. The GPU numbers presented in this plot represent the best measured
for a block size varying the number of threads and the size of the overlap of the
concurrent copy down to the card and computation. Also, these GPU numbers
include the time to copy data down to the GPU as well as the time to copy
computed keys to host memory. The CPU numbers use the Libgcrypt MD5
implementation. From this figure, we see that the GPU greatly outperforms the
CPU implementation.
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Fig. 2. A comparison of MD5 hashing rates for CPU and GPU. Note, the GPU rate
includes both the copying of data to be checksummed down to the cards local memory
as well as the copying of the computed keys from the card to host memory. The GPU
data is the best recorded for a block size varying the number of threads and the amount
of overlap in copy and computation. The CPU numbers are using the Libgcrypt [1] MD5
hashing algorithm.

In addition, with a per-process rate between 600 and 2600 MB/sec, the GPU-
based data rates greatly exceed the per-process rate to stable storage for many
large scale systems. In the next section we construct a simple model to further
illustrate the viability of this approach.

3.4 Viability of Hash-Based Incremental Checkpointing

To evaluate the viability of this method we will compare the performance of this
hash-based mechanism with that of a strictly page-based approach. This hash-
based approach will outperform the page-based approach when the reduction in



the checkpoint size for the hash method outweighs the cost of computing the
hashes of the modified pages. More specifically, this approach is viable when: 4

|checkpoint|

βhash

+
(1 − compression) × |checkpoint|

βckpt

<
|checkpoint|

βckpt

(1)

where |checkpoint| is the size of page-based checkpoint, compression is the per-
cent reduction of hash-based approach in comparison to the page-based method,
βhash is the hashing rate, and βckpt is the rate of checkpoint commit. This equa-
tion can be reduced to:

βckpt

βhash

< compression (2)

Using the CTH data presented previously in this paper, compression is 83%
and the βhash mean is around 2.0GB/s. Therefore, if a machine has a per-
process checkpoint commit speed is less then 1.66GB/s then the hash-based
approach will have a lower overhead than the strictly page-based approach. Even
with many optimizations and high performance parallel file systems that stripe
large writes simultaneously across many disks and file servers, it is difficult to
achieve per-process disk commit bandwidth of this magnitude for many large
scale systems. A per-process commit rate greater than this 1.66GB/sec value
and the page based approach will have lower overheads. For LAMMPS, the
compression is 2.4%, therefore the per-process checkpoint commit breakpoint
speed is much lower at 48MB/sec; a value more easily reached by current parallel
I/O systems.

4 Related Works

Checkpoint/restart is a well-known method for application fault-tolerance for
large-scale distributed and parallel systems that has been studied extensively
for over thirty years [8]. A number of optimizations has been suggested includ-
ing; forked or copy-on-write checkpointing [10], checkpointing to remote nodes
[20], communication-induced checkpointing [15], compiler-assisted checkpointing
[4], incremental checkpointing [6, 11], and probabilistic or hash-based checkpoint-
ing [14, 3]. However, none of these methods have yet matched the performance
of application-specific methods and are therefore not widely accepted by most
capability workloads.

Most closely related to this work, Agarwal et al. [3] investigated the per-
formance characteristics of a hash-based adaptive incremental checkpointing li-
brary. Similar to this work, the authors use an MD5 hash to determine the por-
tions of an application address space that have changed in a checkpoint interval.
In contrast to this work, we evaluate the merit of this hash-based technique on
actual HPC capability workloads. In addition, we show how GPUs can be used

4 Plank et al pose a similar concept [16]



to significantly reduce the overhead of the hash computations. This overhead is
important as the computation overhead must be kept significantly lower than
the rate to save to stable storage. Also, we compare the merit of this technique
with an optimal application-specific checkpoint mechanism. Finally, our work
varies from this previous work as we show that, while this technique may be ap-
propriate for some applications, there are classes of HPC applications for which
this method is clearly not appropriate.

5 Conclusions and Future Work

In this paper, we introduced libhashckpt, an incremental checkpointing library
that uses hashing to save only the changed state of an application in a check-
point interval. To significantly decrease the overhead of the hash calculation,
libhashckpt can utilize GPUs. Using this library, we compare the checkpoint
file sizes of this hash-based method with that of a standard page-protection
mechanism and a highly optimized application-specific mechanism. Using real
capability HPC workloads we show that, for a certain class of applications, this
hash-based method can reduce the checkpoint file size to be around 15% of that
of a page-based approach. In addition, this method can create checkpoint files
which are only 35% larger than that of a manually-coded, application-specific
method. Finally, we introduced a simple model to illustrate this proposed tech-
niques viability for real-world HPC workloads.

There are several avenues of future work related to this research. First, we
would like to analyze more applications in order to evaluate the merit of this
technique to a broader set of large-scale applications. In addition, we would like
to investigate other hash and checksum algorithms. For this study we used a
cryptographically secure hash (MD5), but this algorithm may be overkill for
determining block changes and other collision resistant, yet less computationally
intense, hash signatures may have lower overheads. Lastly, we need to compare
this method with other checkpoint optimization techniques, such as compiler-
assisted incremental checkpoint methods.
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